

Conditional branching, looping, and flow

Allesina S, Wilmes M (2019). Computing Skills for Biologists. Princeton UP 3.5 – 3.6

Week 09 | PP8300 | 2021
Zachary Konkel

Some more basic functions
max() - returns max value of a string, list, or tuple
min()
sum() - returns sum of elements of list or set

`in`
in – Tests for membership and returns True or
False

`in`
in – Tests for membership and returns True or
False

not – Applies the opposite test

Conditional Branching

Bulb work?
No

Yes

Conditional Branching
Let’s say we have an object lamp that we try to turn on
with a method… if it is on lamp evaluates to True,
if it is off then it evaluates to False

Bulb work?
No

Yes

Conditional Branching
Let’s say we have an object lamp that we try to turn on
with a method… if it is on lamp evaluates to True,
if it is off then it evaluates to False

lamp.turn_on_lamp()
if not lamp:

print(“Lamp doesn’t work”)
if lamp.plug_in():

print(“Lamp is plugged in”)
if lamp.bulb():

print(“Repairing lamp”)
lamp.repair()

else:
print(“Replacing bulb”)
lamp.replace_bulb()

else:
print(“Plugging in lamp”)
lamp.plug_in()

Bulb work?
No

Yes

Flow & conditional branching in python

Flow & conditional branching in python

Note the ‘:’
– Commands that alter the flow of a program contain ‘:’

if, elif, else, for, while

Flow & conditional branching in python

Note the ‘:’
– Commands that alter the flow of a program contain ‘:’

if, elif, else, for, while

Note the indentation on the following line
– Indentation tells python to execute the line(s) if the conditional expression evaluates True
– Python will accept most consistent indentation, but recommends four spaces

– DO NOT USE TABS unless your text editor converts Tab to four spaces
– All code at the same indentation level is considered part of the same block of code

Multiple conditions in conditional branching

else: if all of the above conditions are not met, execute the else block
● It is NOT required

Multiple conditions in conditional branching

elif: if the preceding condition is not True AND the elif condition is, then run the
elif block

– Otherwise, proceed to the next condition if any is present

Looping in python
Looping modifies the flow of a program by iterating through a block of code multiple times
– Iterating through files in a directory, elements in a list, etc

Looping in python

Python employs two loop types: for, while

– for will loop through elements of a sequence in order
● Your program knows beforehand how long you want to loop (e.g. through a list,

keys in a dictionary)

Looping in python

Python employs two loop types: for, while

– while will loop so long as a condition is met
● You don’t directly know how long you want to loop
● This can be infinite! CTRL + C to stop (CMD + C)

Altering loop under specific conditions

Let’s say you don’t want to continue looping under a specific condition
– python has 3 mechanisms to address this:

● continue, break, pass
– continue – continue to next iteration in loop
– break – stop and break out of the loop
– pass – a null placeholder, rarely used

Altering loop under specific conditions

Let’s say you don’t want to continue looping under a specific condition
– python has 3 primary ways to address this:

● continue, break, pass
– continue – continue to next iteration in loop

Altering loop under specific conditions

Let’s say you don’t want to continue looping under a specific condition
– python has 3 primary ways to address this:

● continue, break, pass
– break – stop and break out of the loop

Putting it together – practical looping

python presents multiple ways to iterate through a sequence
– remember there should only be one and preferably only one obvious solution

Putting it together – practical looping
python presents multiple ways to iterate through a sequence
– remember there should only be one and preferably only one obvious solution

List comprehensions abridge loop functions
python provides a convient, readable way to consolidate list expressions into a single line

List comprehensions abridge loop functions

python provides a convient, readable way to consolidate list expressions into a single line of
code

List comprehensions abridge loop functions
python provides a convient, readable way to consolidate list expressions into a single line of
code
– List comprehensions can include simple conditional expressions too

x = [5, 6, 600, 500]

w = [i for i in x if i < 100]

New elements Loop expression Conditional expression

List comprehensions abridge loop functions
python provides a convient, readable way to consolidate list expressions into a single line of
code
– List comprehensions can include simple conditional expressions too

x = [5, 6, 600, 500]

w = [i for i in x if i < 100]

New elements Loop expression Conditional expression

x, w = [5, 6, 600, 500], []
for i in x:

if i < 100:
w.append(i)

List comprehensions abridge loop functions

List comprehensions can also be used to construct dictionaries and other data types
x = [‘honey’, ‘meat’, ‘juice’]

y = [‘bee’, ‘bear’, ‘berry’]

z = {element: y[index] for index,element in enumerate(x)}

{'honey': 'bee', 'meat': 'bear', 'juice': 'berry'}

List comprehensions abridge loop functions

List comprehensions can also be used to construct dictionaries and other data types
x = [‘honey’, ‘meat’, ‘juice’]

y = [‘bee’, ‘bear’, ‘berry’]

z = {element: y[index] for index,element in enumerate(x)}

My opinion: list comprehensions are useful in constructing neat, readable python code;
however, they simply implement and draw from conceptually understanding loops and
conditional expressions, so I think it is best to familiarize yourself with the longer format
first.

{'honey': 'bee', 'meat': 'bear', 'juice': 'berry'}

What can looping and conditional branching
enable in your research?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

