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Some more basic functions 
max() - returns max value of a string, list, or tuple
min()
sum() - returns sum of elements of list or set



  

`in`
in – Tests for membership and returns True or 
False



  

`in`
in – Tests for membership and returns True or 
False

not – Applies the opposite test



  

Conditional Branching
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Conditional Branching
Let’s say we have an object lamp that we try to turn on 
with a method…  if it is on lamp evaluates to True, 
if it is off then it evaluates to False
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Conditional Branching
Let’s say we have an object lamp that we try to turn on 
with a method…  if it is on lamp evaluates to True, 
if it is off then it evaluates to False

lamp.turn_on_lamp()
if not lamp:

print(“Lamp doesn’t work”)
if lamp.plug_in():

print(“Lamp is plugged in”)
if lamp.bulb():

print(“Repairing lamp”)
lamp.repair()

else:
print(“Replacing bulb”)
lamp.replace_bulb()

else:
print(“Plugging in lamp”)
lamp.plug_in()

Bulb work?
No

Yes



  

Flow & conditional branching in python



  

Flow & conditional branching in python

Note the ‘:’
– Commands that alter the flow of a program contain ‘:’

if, elif, else, for, while



  

Flow & conditional branching in python

Note the ‘:’
– Commands that alter the flow of a program contain ‘:’

if, elif, else, for, while

Note the indentation on the following line
– Indentation tells python to execute the line(s) if the conditional expression evaluates True
– Python will accept most consistent indentation, but recommends four spaces

– DO NOT USE TABS unless your text editor converts Tab to four spaces
– All code at the same indentation level is considered part of the same block of code



  

Multiple conditions in conditional branching

else: if all of the above conditions are not met, execute the else block
● It is NOT required



  

Multiple conditions in conditional branching

elif: if the preceding condition is not True AND the elif condition is, then run the 
elif block

– Otherwise, proceed to the next condition if any is present



  

Looping in python
Looping modifies the flow of a program by iterating through a block of code multiple times 
– Iterating through files in a directory, elements in a list, etc



  

Looping in python

Python employs two loop types: for, while

– for will loop through elements of a sequence in order
● Your program knows beforehand how long you want to loop (e.g. through a list, 

keys in a dictionary)



  

Looping in python

Python employs two loop types: for, while

– while will loop so long as a condition is met
● You don’t directly know how long you want to loop
● This can be infinite! CTRL + C to stop (CMD + C)



  

Altering loop under specific conditions

Let’s say you don’t want to continue looping under a specific condition
– python has 3 mechanisms to address this:

● continue, break, pass
– continue – continue to next iteration in loop
– break – stop and break out of the loop
– pass – a null placeholder, rarely used



  

Altering loop under specific conditions

Let’s say you don’t want to continue looping under a specific condition
– python has 3 primary ways to address this:

● continue, break, pass
– continue – continue to next iteration in loop



  

Altering loop under specific conditions

Let’s say you don’t want to continue looping under a specific condition
– python has 3 primary ways to address this:

● continue, break, pass
– break – stop and break out of the loop



  

Putting it together – practical looping

python presents multiple ways to iterate through a sequence
– remember there should only be one and preferably only one obvious solution



  

Putting it together – practical looping
python presents multiple ways to iterate through a sequence
– remember there should only be one and preferably only one obvious solution



  



  

List comprehensions abridge loop functions
python provides a convient, readable way to consolidate list expressions into a single line



  

List comprehensions abridge loop functions

python provides a convient, readable way to consolidate list expressions into a single line of 
code



  

List comprehensions abridge loop functions
python provides a convient, readable way to consolidate list expressions into a single line of 
code
– List comprehensions can include simple conditional expressions too

x = [5, 6, 600, 500]

w = [i for i in x if i < 100]

New elements Loop expression Conditional expression



  

List comprehensions abridge loop functions
python provides a convient, readable way to consolidate list expressions into a single line of 
code
– List comprehensions can include simple conditional expressions too

x = [5, 6, 600, 500]

w = [i for i in x if i < 100]

New elements Loop expression Conditional expression

x, w = [5, 6, 600, 500], []
for i in x:

if i < 100:
w.append(i)



  

List comprehensions abridge loop functions

List comprehensions can also be used to construct dictionaries and other data types
x = [‘honey’, ‘meat’, ‘juice’]

y = [‘bee’, ‘bear’, ‘berry’]

z = {element: y[index] for index,element in enumerate(x)}

{'honey': 'bee', 'meat': 'bear', 'juice': 'berry'}



  

List comprehensions abridge loop functions

List comprehensions can also be used to construct dictionaries and other data types
x = [‘honey’, ‘meat’, ‘juice’]

y = [‘bee’, ‘bear’, ‘berry’]

z = {element: y[index] for index,element in enumerate(x)}

My opinion: list comprehensions are useful in constructing neat, readable python code; 
however, they simply implement and draw from conceptually understanding loops and 
conditional expressions, so I think it is best to familiarize yourself with the longer format 
first.

{'honey': 'bee', 'meat': 'bear', 'juice': 'berry'}



  

What can looping and conditional branching 
enable in your research?
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