Introduction to microbiome workshop

Dec. 16-17, 2020

https://mcic-osu.github.io/2020-12-microbiomics-workshop/

Instructors:

Dr. Jelmer Poelstra: poelstra.1@osu.edu Dr. Antonino Malacrino: malacrino.1@osu.edu Dr. M. Soledad Benitez P.: benitezponce.1@osu.edu

Dataset description

<u>Lab goals</u>: Contribute to our understanding of winter cover crops effect on soil health, microbial communities and corn-soybean production

Field experiment objectives:

To evaluate the effect of cereal rye cover crop in subsequent soybean production (Fry Farm, Wooster, OH)

To characterize microbial community changes between cover crop establishment, cover crop termination and subsequent soybean crop

To determine the effect of timing of cereal rye termination on subsequent soybean productivity and associated microbiome

Dataset description

No cover crop Cover crop (Fall 2018)

Treatments

T1	Control - No rye cover crop before soybean
Т2	Rye CC terminated 12-14 days before soybean planting
Т3	Rye CC terminated 1-0 days prior to soybean planting
T4	Rye CC terminated 5 days after soybean planting

n=6

Amplicon sequencing data analysis

1. Sequencing quality check (performed at different stages of analyses)

- 2. Assign sequences to sample (demultiplexing, based on barcodes)
- 3. Trimming of adapters and primers
 - * For ITS pipeline ITS extraction (ITSx)
- 4. Define SV/OTU (sequence variants / operational taxonomic units)
- 5. Classify SV/OTUs using appropriate reference database (e.g. SILVA, UNITE)6. Filter SV/OTUs
- 7. Generate Sample by OTU/SV table
- 8. Generate FASTA file with sequence representative of each SV/OTU
- 9. USE 6 and 7 for downstream analyses

Table 1 List of commonly used tools for metabarcoding data analysis

From: Mycobiome diversity: high-throughput sequencing and identification of fungi

Name	Description and link		Refs
	Amplicon sequence variant analysis pipeline		38
DADAZ	https://benjjneb.github.io/dada2/		
Colora	Web-based platform, including various analytical tools		183
Galaxy	https://usegalaxy.org/		
Latus	Full pipeline for amplicon data		47
Lolus	http://psbweb05.psb.ugent.be/lotus/index.html		
mothur	Versatile software suite (designed mostly for 16S rRNA)		35
mothur	https://www.mothur.org		
	Full pipeline for amplicon data		27
AIVIPIK	http://amptk.readthedocs.io		
OPITable	Versatile software package		184
OBITOOIS	https://git.metabarcoding.org/obitools		
PipeCraft	Full pipeline for amplicon data (with graphical user interface)		46
Fipeciait	https://plutof.ut.ee/#/datacite/10.15156%2FBIO%2F587450		
DIDITS	Full pipeline for fungal ITS amplicon data (only for Illumina data)		48
	https://github.com/hsgweon/pipits		
OIIME	Full pipeline for amplicon data (designed mostly for 16S rRNA)		185
QIIVIL	https://qiime2.org		
SEED2	Full pipeline for amplicon data (with graphical user interface; on Windows)		186
SEEDZ	http://www.biomed.cas.cz/mbu/lbwrf/seed		
Microbiology se	Tools, including ITSx and Metaxa2, for processing ITS, SSU and LSU data		32, 187
Wile obiology.se	http://microbiology.se		
	Versatile software package		33
OBEARON	https://www.drive5.com/usearch		
VSEARCH	Versatile software package		34
	https://github.com/torognes/vsearch		

ITS, internal transcribed spacer; LSU, large subunit; rRNA, ribosomal RNA; SSU, small subunit.

Things to look for in a pipeline

- Different quality control steps:
 - Sequence length (trimming)
 - Low quality reads (filtering)
 - Deal with sequencing errors (denoising/error correction)
 - Homopolymers
 - Chimeras
- OTU vs SV (podcast: https://bioinformatics.chat/ampliconsequence-variants)
- Deal with controls
- Documentation
- Format/compatibility with downstream analysis

FASTQ – quality profile plot

https://benjjneb.github.io/dada2/tutorial_1_6.html

Analysing and interpreting your data

To normalize or not?

What is your question and hypothesis?

McMurdie, Paul J., and Susan Holmes. "Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible." *PLoS Comput Biol* 10, no. 4 (2014): e1003531.

Weiss, Sophie, Zhenjiang Zech Xu, Shyamal Peddada, Amnon Amir, Kyle Bittinger, Antonio Gonzalez, Catherine Lozupone, et al. "Normalization and Microbial Differential Abundance Strategies Depend upon Data Characteristics." *Microbiome* 5, no. 1 (March 3, 2017): 27.

https://doi.org/10.1186/s40168-017-0237-y.

Which analyses to apply?

P CSCS CSSWP CSSWS CSSWS CSSWS CSSWS CCSSWS CCSSWS

- **Different methods, packages, visualization tools** phyloseq, ampvis2, vegan (R)
- Dealing with controls, replicates and contaminants decontam

Hugerth, Luisa W, and Anders F Andersson. "Analysing Microbial Community Composition through Amplicon Sequencing: From Sampling to Hypothesis Testing." *Frontiers in Microbiology* 8 (2017): 1561.

R. Poudel, etal 2016.

Microbiome Networks: A Systems Framework for Identifying Candidate Microbial Asse

Submit to databases!!!

A Transdisciplinary Journal of Sustainable Plant Productivity

PERSPECTIVE

Community-Driven Metadata Standards for Agricultural Microbiome Research

J. P. Dundore-Arias,^{1,†} E. A. Eloe-Fadrosh,² L. M. Schriml,³ G. A. Beattie,⁴ F. P. Brennan,⁵ P. E. Busby,⁶ R. B. Calderon,⁷ S. C. Castle,⁸ J. B. Emerson,⁹ S. E. Everhart,¹⁰ K. Eversole,¹¹ K. E. Frost,¹² J. R. Herr,¹³ A. I. Huerta,¹⁴ A. S. Iyer-Pascuzzi,¹⁵ A. K. Kalil,¹⁶ J. E. Leach,¹⁷ J. Leonard,¹⁸ J. E. Maul,¹⁹ B. Prithiviraj,²⁰ M. Potrykus,²¹ N. R. Redekar,²² J. A. Rojas,²³ K. A. T. Silverstein,²⁴ D. J. Tomso,²⁵ S. G. Tringe,²⁶ B. A. Vinatzer,²⁷ and L. L. Kinkel²⁸