Introduction to metabarcoding

Antonino Malacrino

EEOB, The Ohio State University

December, 16 2020

Outline

Introduction

DNA extraction

PCR

Metabarcoding workflow

Library preparation

Illumina sequencing technology

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sequencing run

Secondary data processing

Data analysis

More tools

Introduction

Who is in there?

- What they can do?
- What are they doing?
- Are they really doing it?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Who is in there?
- What they can do?
- What are they doing?
- Are they really doing it?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

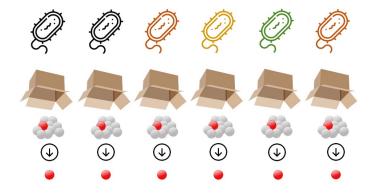
- Who is in there?
- What they can do?
- What are they doing?
- Are they really doing it?

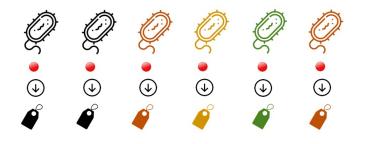
イロト 不得 トイヨト イヨト

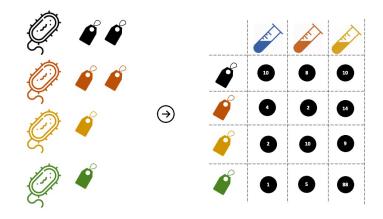
3

- Who is in there?
- What they can do?
- What are they doing?
- Are they really doing it?

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで






Metabarcoding

Metabarcoding

Metabarcoding

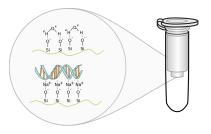
General workflow

- 1. Sample collection
- 2. DNA extraction
- 3. PCR amplification of our target

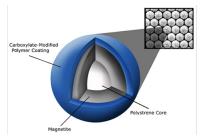
▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

- 4. Adaptor ligation
- 5. Sequencing
- 6. Data analysis

DNA extraction


Organic solvents

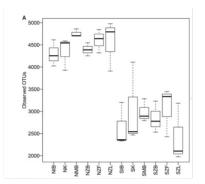
- Spin columns
- SPRI beads
- ► Many other (CTAB, ...)


▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

- Organic solvents
- Spin columns
- SPRI beads
- ▶ Many other (CTAB, ...)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Organic solvents
- Spin columns
- SPRI beads
- Many other (CTAB, ...)

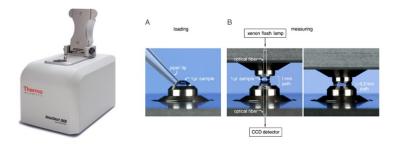


▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Organic solvents
- Spin columns
- SPRI beads
- Many other (CTAB, ...)

Technical considerations

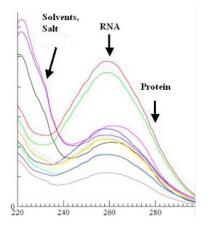
- DNA extraction introduces a bias in the final dataset
- A recent investigation on 322 studies shows they used 72 different methods. 14 did not report such info!


(日) (四) (日) (日) (日)

Technical considerations

- DNA extraction introduces a bias in the final dataset
- A recent investigation on 322 studies shows they used 72 different methods. 14 did not report such info!

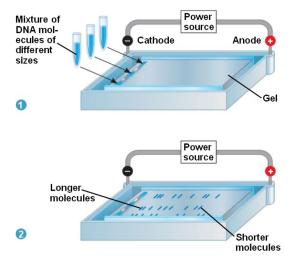
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで


QC - Nanodrop

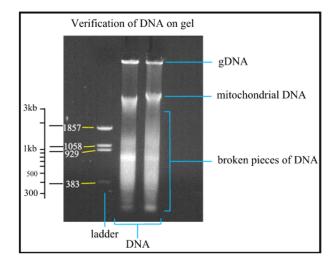
(ロ)、(型)、(E)、(E)、 E) の(()

QC - Nanodrop

- DNA concentration ng/ul
- Ratio 260/230
- Ratio 260/280

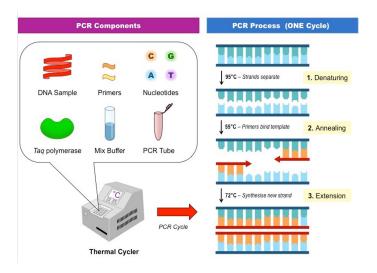

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

QC - Qubit



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

QC - Gel Electrophoresis



QC - Gel Electrophoresis

PCR

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

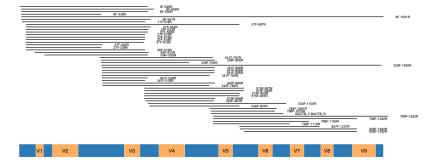
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Thermocycler

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Technical considerations

- Target gene
 - ▶ Who is our target? Bacteria, fungi, insects, fish, specific genus
 - Is the resolution optimal for our question?
 - Are PCR primers available or we have to design them?
 - Is the taxonomy database available or we have to build a custom one?
- PCR bias
 - Use a Hi-Fi polymerase
 - Use optimal annealing temperature
 - Do not exaggerate with PCR cycles
 - Run multiple PCRs on the same sample


0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 bp

CONSERVED REGIONS: unspecific applications

VARIABLE REGIONS: group or species-specific applications


Technical considerations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Metabarcoding workflow

(ロ)、(型)、(E)、(E)、 E) の(()

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Control samples

- Negative control 1. Run molecular biology grade water throughout the pipeline. Pool it with the other samples even if you do not see amplification.
- Negative control 2. This is the negative control from your first PCR. If you see a band, discard the entire batch of samples and start again. If no band is observed, sequence anyway.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Mock community. Pre-built or custom.

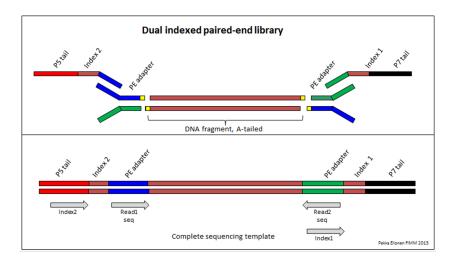
Control samples

- Negative control 1. Run molecular biology grade water throughout the pipeline. Pool it with the other samples even if you do not see amplification.
- Negative control 2. This is the negative control from your first PCR. If you see a band, discard the entire batch of samples and start again. If no band is observed, sequence anyway.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

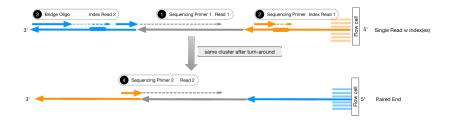
Mock community. Pre-built or custom.

Control samples


- Negative control 1. Run molecular biology grade water throughout the pipeline. Pool it with the other samples even if you do not see amplification.
- Negative control 2. This is the negative control from your first PCR. If you see a band, discard the entire batch of samples and start again. If no band is observed, sequence anyway.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

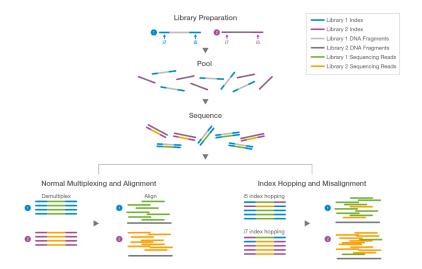
Mock community. Pre-built or custom.


Library preparation

Multiplexing

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Multiplexing


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Multiplexing

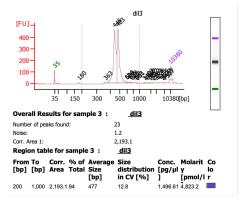
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Index hopping

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ・ 今 Q ()・

Equimolar pooling

Goal: guarantee that all samples are sequenced at the same depth

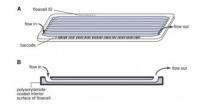

(ロ)、

- 1. Qubit
- 2. Calculate nM
- 3. Pool according to sample concentration

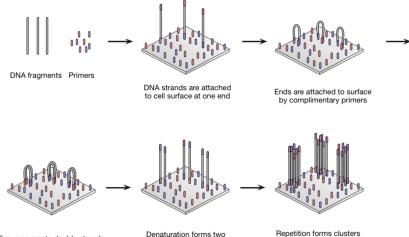
Final quality control

- Bioanalyzer / Tapestation
- qPCR

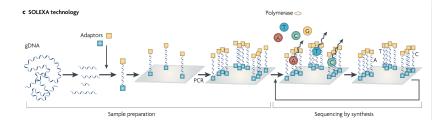
Qubit

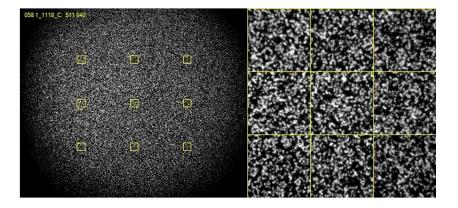

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

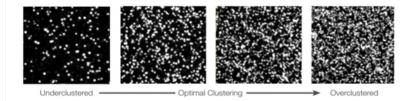
Illumina sequencing platforms


		From	genome-wide disc	covery to targeted va	uidation and screeni	, o ,		
Sequencing							Sequencing & Arrays	Arrays
Instrument	NovaSeq [™] 6000 System	HiSeq X" Ten" System	HiSeq [™] 4000 System	MiSeq [™] and MiSeqDx ^{™ t} Systems	MiniSeq [™] System	iSeq [™] 100 System	NextSeq ^{1*} 550 and NextSeq ^{1*} 550Dx ⁴ Systems	iScan" System

Flow cell

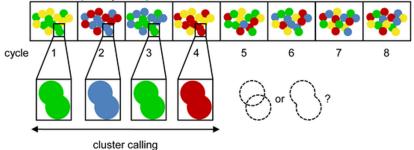

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @


Enzymes create double strands


Denaturation forms two separate DNA fragments Repetition forms clusters of identical strands

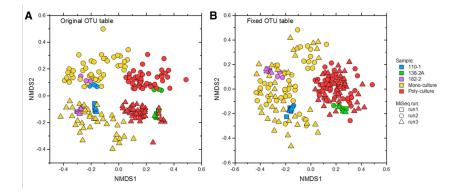
(日)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで



うせん 川田 ふぼや 小田 くらく

unbiased sample



low complexity sample

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

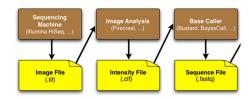
Technical considerations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sequencing run

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Sequencing Analysis Viewer


▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

To	tal: 20	9 Extracted: 209 Ca	alled: 209 Score	d: 209 Copied: 209	130328_SN	301_0102	_BD1W0DA	схх					
Run I	nfo	Tile Status C	harts Sur	nmary Plots	Cluster Densi	ty Data B	y Cycle						
Rea	d #1												
Lane	Tiles	Clu.Dens. (#/mm ²)	% PF Clusters	Clusters PF (#/mm ²)	% Phas./Preph.	Cycles Err Rated	% Aligned	% Error Rate	% Error Rate 35 cycle	% Error Rate 75 cycle	% Error Rate 100 cycle	1 st Cycle Int	% Intensity Cycle 20
	96	651K +/- 73.2K	92.4 +/- 2.24	601.2K +/- 60.57K	0.135 / 0.220	100	0.63 +/- 0.021	0.22 +/- 0.043	0.10 +/- 0.018	0.16 +/- 0.025	0.22 +/- 0.043	2154 +/- 171.1	208.8 +/- 13.0
	96	596K +/- 70.2K	92.1 +/- 1.72	548.5K +/- 59.51K	0.135 / 0.217	100	0.75 +/- 0.026	0.21 +/- 0.043	0.10 +/- 0.030	0.16 +/- 0.043	0.21 +/- 0.043	3322 +/- 469.7	140.5 +/- 21.5
	96	817K +/- 89.5K	88.6 +/- 3.48	721.8K +/- 62.12K	0.131 / 0.214	100	0.41 +/- 0.029	0.25 +/- 0.040	0.11 +/- 0.044	0.19 +/- 0.037	0.25 +/- 0.040	5464 +/- 344.6	78.9 +/- 1.42
	96	560K +/- 78.3K	94.2 +/- 1.74	526.5K +/- 67.52K	0.127 / 0.219	100	0.78 +/- 0.046	0.21 +/- 0.048	0.11 +/- 0.070	0.16 +/- 0.053	0.21 +/- 0.048	5686 +/- 350.0	79.5 +/- 1.45
	96	459K +/- 68.2K	95.6 +/- 1.27	438.3K +/- 61.51K	0.137 / 0.228	100	1.00 +/- 0.054	0.19 +/- 0.034	0.09 +/- 0.026	0.14 +/- 0.023	0.19 +/- 0.034	5867 +/- 342.8	79.0 +/- 1.38
	96	492K +/- 72.4K	95.3 +/- 1.52	468.1K +/- 64.24K	0.138 / 0.225	100	0.97 +/- 0.050	0.20 +/- 0.045	0.10 +/- 0.028	0.15 +/- 0.027	0.20 +/- 0.045	5795 +/- 331.7	79.1 +/- 1.22
	96	754K +/- 92.8K	90.2 +/- 3.11	678.4K +/- 69.17K	0.142 / 0.215	100	0.47 +/- 0.032	0.24 +/- 0.072	0.11 +/- 0.029	0.19 +/- 0.057	0.24 +/- 0.072	5622 +/- 350.6	76.4 +/- 1.43
	96	657K +/- 86.0K	92.3 +/- 2.44	605.2K +/- 69.96K	0.145 / 0.219	100	0.00 +1 0.007	0.00.1.0.010	0.10 +/- 0.026	0 47 4/ 0 029	0 22 +1 0 049	ETT2 +/ 200 2	77 2 4/ 4 20

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Primary data analysis

- Primary analysis
 - From image to base calling
 - Cluster detection (4th cycle)
 - Cluster intensity correction
 - Base calling
 - Clusters are filtered (CPF, 25th cycle)
 - Q scores are assigned to each base
- CASAVADemultiplex
 - Create fastq files

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Primary data analysis

Primary analysis

- From image to base calling
- Cluster detection (4th cycle)
- Cluster intensity correction
- Base calling
- Clusters are filtered (CPF, 25th cycle)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Q scores are assigned to each base
- CASAVA
 - Demultiplex
 - Create fastq files

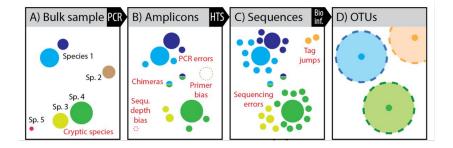
Secondary data processing

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Workflow

- De-multiplexing
- Reads pre-processing
- Dereplication
- Clustering of variants
- Filtering of artefacts
- Alignment to references
- Taxonomy annotation
- Downstream analysis

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ


First choice!

OTUs (Operational Taxonomic Unit)

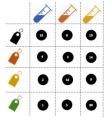
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

AVSs (Amplicon Sequence Variant)

Remember: bias is everywhere!

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Which is our goal?


Metadata

1	sampleid	Treatment	Years
2	AM-165-1	maize-mono	1999
3	AM-165-2	maize-mono	1999
4	AM-16S-3	maize-mono	1999
5	AM-16S-4	push-pull	1999
6	AM-16S-5	push-pull	1999

Taxonomy

ASV148428	Bacteria(100);Proteobacteria(100);Gammaproteobacte
ASV212114	Bacteria(100);Cyanobacteria(100);Cyanobacteria(100);
ASV9620	Bacteria(100);Proteobacteria(100);Alphaproteobacteri
ASV147186	Bacteria(100);Proteobacteria(100);Betaproteobacteria(
ASV89359	Bacteria(100);Proteobacteria(100);Alphaproteobacteri
ASV1061	Bacteria(100);Proteobacteria(100);Gammaproteobacte
ASV328581	Bacteria(100);Bacteroidetes(100);Bacteroidia(100);Bac
ASV86104	Bacteria(100);Proteobacteria(100);Alphaproteobacteri

OTU table

Phylogenetic tree

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

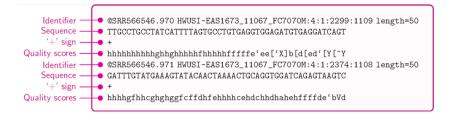
What do we have?

Raw data

OVID D REED NO REWOKKOWS LIFE AN	CONTRACTOR AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRES
EADT ADDOTOCLASCUTTUTCODAATTAC	TOOOCOTALAGADCTICUTADOCDOTTTU/TOTOLOCOTOTIC/TOTOLALA/TOCOGOCTTOCADCOCOTALACTOCOGOCTTOCADOCDATAC
ICAAACTTOACTACTOCAGGOCAGACTOGAG TGAGGAGCGAAAGCOTOGCTAGCGAACAGE	TTCCTODTCTADCDCTGAAATGCDCAGATATCADGAGGAACACCODTGDCGAAGGCODOTCTCTGOGCADTAACTGAG
AND A STREET OF A STREET OF A STREET OF	COLDER INTERCONTEE IN ANALALALALALALALALALALALALALALALALALAL
WYHN I HEND SHIRWCRECKESTER III	ET 2014 I NU COAGTT and herden handen handen herden herden handen her detter herden herd

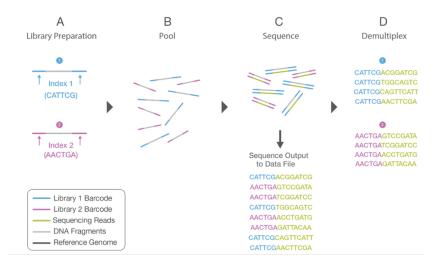
SECTIONET DURING DURING TANDED ATTOC MODELAND OF FAANDUT HEAT AT NOTANG AND DURING AND DO DOTT HED AND THE AND TREADER DE ANNO TRODUCE ANNA AND 1 1

DISTUTIONAL CONTRACTOR DE LA CONTRACTOR

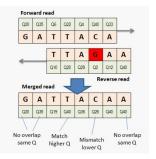

PERSON THE DESIGNMENT AND ADDRESS TO ADDRESS ADDRES ADDRESS ADDRESS

INTERNATIONALISENSE IN CONTRACT, INC.CONTRACT, I

9710 Л. 1980 28.1995 (2005) 2.116 (2016) ТАКОСИТТ ИД БИАЛАЛАЛАЛА И И КАТОЛОГИКА САЛОСКАЛА В АЛГИИ И КАТОЛИКИ В КАТОЛИКИ И КАТОЛИКИ В КОЛИКИТИКИ И КАТОЛИКИ В КОЛИКИТИКИ И КАТОЛИКИ В КОЛИКИТИКИ И КАТОЛИКИ И КАТОЛИКИ


	Me	tadata	
1	sampleid	Treatment	Years
2	AM-165-1	maize-mono	1999
3	AM-165-2	maize-mono	1999
4	AM-16S-3	maize-mono	1999
5	AM-165-4	push-pull	1999
6	AM-16S-5	push-pull	1999

*.fastq files


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Demultiplexing

Merge PE reads

Adapter	Fwd primer	Biological sequence (16S, ITS etc.)	Rev primer	Adapte
		Forward read (R1)		
		Reverse read (R2)		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Remove suspicious reads

>GQY1XT001A6MUA

AATGGTACCCGTCAATTCATTTGATCTTGCGGTTCGTTTACGGCGTGGACTACCAGTCGCACTCCAGTCATACAGTTTCCAATG

>GQY1XT001BTRWS

AATGGTACCCGTCAATTCCTTTGATCTTGCGGGCCGTTTACGGCGTGGACTACCAGTCGCACTCGAGCTGCACAGTTTCCAAAGCAGTTCCGGGGTTGGG >GQY1XT001AK4J0

TCTAGCCGCACAGTTTCAAAAGCACTCCCAGGGTT

>GQY1XT001BBPBR

AATGGTACCCGTCAATTCATTGACGTTGCCCCCCGTTTACTGTGCGGACTACCAGTCGCACTCAAGGCCCCCAGTTTCAACGG >GQY1XT001BDDE9

AATGGTACCCGTCAATTCCTTTAATCTTGCGGGTCGTTTACGGCGTGGACTACCAGTCGCACTCCAGTTACACAGTTTCCAGAG

>GQY1XT001CIUF3

AATGGTACCCGTCAATTCCTTTGATCTTGCGGGCCTTTACGGCGTGGACTACCAGGCGCCCTCCAGCCCGGCAGTTTCCAGTGCAGTCCCGGGGTT >GQY1XT001BKRP5

>GQY1XT001B44ZE

AATGGTACCCGTCAATTCATTTAACCTTGCGGGGGTTTTACCGCGTGGACTACCAGGCGCCCTCAAGAAGAACAGTTTTGAACGCAGCTATGGGTT >GQY1XT001CIW3P

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 うんぐ

AATGGTACCCGTCAATTCATTTGACGTTGCCTCTCGTTTACTGCGTGGACTACCAGTCGCACTCAAGGCCCCCA

>GQY1XT001A731D

AATGGTACCCGTCAATTCATTTAACGTTGCCCCCGTTACTGCGTGGACTACCAGGGGCAATCAAGACTGCCA

Trimming same length

>GQY1XT001A6MUA ARTOGTACCCGTCAATTCATTGATCTTGCGGTTCGTTTACGGCGTGGACTACCAGTCGCACTCCAGTCAT >GQY1XT001BTRNS ARTOGTACCCGTCAATTCCTTTGATCTTGCGGGCCGTTTACGGCGTGGACTACCAGTCGCACTCGAGCTGCA >GQY1XT001AK4J0 TCTAGCCGCACAGTTTCAAAAGCACTCCCAGGGTT	
>GQY1XT001BDDE9 AATGGTACCCGTCAATTCATTGACGTTGCCCCCCGTTTACTGTGCGGACTACCAGTCGCACTCAAGGCCCC >GQY1XT001BDDE9	CAGTTTCAACGG
AATGGTACCCGTCAATTCCTTTAATCTTGCGGGTCGTTTACGGCGTGGACTACCAGTCGCACTCCAGTTACI >GQVIXT001CIUF3	CAGTTTCCAGAG
AATGGTACCCGTCAATTCCTTTGATCTTGCGGGGCCTTTACGGCGTGGACTACCAGGCGCCCTCCAGCCCGG >GQY1XT001BKRP5	AGTTTCCAGTGCAGTCCCGGGGTT
AATGGTACCCGTCAATTCATTTAATCTCTCCCCCCTTTCCCCCCCC	
AATGGTACCCGTCAATTCATTTAACCTTGCGGGGTTTTACCGCGTGGACTACCAGGCGCCCTCAAGAAGAA >GQY1XT001CIW3P AATGGTACCCGTCAATTCATTGACGTGCCTCCGTTTACTGCGTGGACTACCAGTCGCACTCAAGGCCC	
ARTGOTACCORTCANTCATTARCGT GCCCCCGTTACTGCGTGGACTACCAGGGGCAATCAAGACTGCC	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Dereplication

>GQY1XT001A6MUA

AATGGTACCCGTCAATTCATTTGATCTTGCGGTTCGTTTACGGCGTGGACTACCAGTCGCACTCCAGTCATA >GQY1XT001BTRWS

AATGGTACCCGTCAATTCCTTTGATCTTGCGGGGCCGTTTACGGCGTGGACTACCAGTCGCACTCGAGCTGCA >GOY1XT001BBPBR

AATGGTACCCGTCAATTCATTTGATCTTGCGGTTCGTTTACGGCGTGGACTACCAGTCGCACTCCAGTCATA >GQY1XT001BDDE9

AATGGTACCCGTCAATTCATTTGATCTTGCGGTTCGTTTACGGCGTGGACTACCAGTCGCACTCCAGTCATA >GQY1XT001CIUF3

AATGGTACCCGTCAATTCCTTTGATCTTGCGGGGCCGTTTACGGCGTGGACTACCAGTCGCACTCGAGCTGCA >GQY1XT001B442E

AATGGTACCCGTCAATTCATTTGATCTTGCGGTTCGTTTACGGCGTGGACTACCAGTCGCACTCCAGTCATA >GQY1XT001CIW3P

AATGGTACCCGTCAATTCCTTTGATCTTGCGGGGCCGTTTACGGCGTGGACTACCAGTCGCACTCGAGCTGCA >GQY1XT001A731D

 ${\tt AATGGTACCCGTCAATTCATTTGATCTTGCGGTTCGTTTACGGCGTGGACTACCAGTCGCACTCCAGTCATA$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Dereplication

>GQY1XT001A6MUA DEPTH = 5

ANTGGTACCCGTCAATTCATTTGATCTTGCGGGTTCGTTTACGGCGTGGACTACCAGTCGCACTCCAGTCATA >GQY1XT001BTRWS DEPTH = 3

AATGGTACCCGTCAATTCCTTTGATCTTGCGGGCCGTTTACGGCGTGGACTACCAGTCGCACTCGAGCTGCA

>GGY1XT001BBPBR AATGGTACCCGTCAATTCATTTGATCTTGCGGTTCGTTTACGGCGTGGACTACCAGTCGCACTCCAGTCGTAT >GQY1XT001BDDD AATGGTACCCGTCAATTCATTTGATCTTGCGGTCGTTTACGGCGTGGACTACCAGTCGCACTCCAGTCATA >GQY1XT001C1UF3 AATGGTACCCGTCAATTCCTTTGATCTTGCGGGTCGTTTACGGCGTGGACTACCAGTCGCACTCCAGTCGTA >GQY1XT001B442E AATGGTACCCGTCAATTCATTTGATCTTGCGGGTCGTTTACGGCGTGGACTACCAGTCGCACTCCAGTCATA >GQY1XT001C1W3P AATGGTACCCGTCAATTCCTTTGATCTTGCGGGCCGTTTACGGCGTGGACTACCAGTCGCACTCCAGCTGCA >GQY1XT001C1W3P

Cluster variants

>*S16-0000006

TACGTTTATCGCGTT-AGCTTCGCCAAGCACAGCATCCTGCGCTTAGCCAACGTACATCGTTTAGGGTGTGGACTAA >#\$16-0000046 TACGTTTATCGCGTTTAGCGTTCGCCAAGCACGCATCCTGCGCTTAGCCAACGTACATCGTTTAGGGTGTGGGACTAA

>#S16-0000241

TACGTTTATCGCGTT-AGCTTCGCCAAGCACAGCATCCTGCGCTTAGCCAACGTACATCGT-TAGGGTGTGGACTAA >#\$16-0000375

TACGTTTATCGCATT-AGCTTCGCCAAGCACAGCATCCTGCGCTTAGCCAACGTACATCGTTTAGG-TGTGGACTAA >*\$16-0000001

GGCACTTAAAGCGTTAGCTACGGCGCAGAAACCACGGGTGG-CCCCCACACCTAGTGCCCAACGTTTACAGCGTGGT >#\$16-0000209

GGCACTTAAAGCGTTAGCTACGGCGCAGAAACCACGGGTGGTCCCCCACACCTAGTGCCCAACGTTTACAGCGTGGG >#\$16-0000667

GGCACTTAAAGCGTTAGCTACGGCGCAGAAACCACGGGTGG-CCCCCACACCTAGTGC-CAACGTTTACAGCGTGGT >*\$16-0000004

TCGACTTAACGCGTTAGCTCCGGAAGCCACGCCTCAAGG-GCACAACCTCCAAGTCGACATCGTTTACGGCGTGGAT >#\$16-0000625

TCGACTTAACGCGTTAGCTCCGGAAGCCACGCCTCAAGG-GCACAACCTCCAAGTCGACATCGT-TACGGCGTGGAT >#\$16-0000673

TCGACTTAACGCGTTAGCTCCGGAAGCCACGCCTCAAGGGGCACAACCTCCAAGTCGACATCGTTTACGGCGTGGAT

Cluster variants

>*S16-000006 DEPTH + 3
TACGTTATCGCGTGT-AGCTCCGCCAAGCACCAGCATCCTGCGGCTTAGCGAACGTACATCGTTTAGGGTGTGGACTAA
**S16-000001 DEPTH + 2
GGCACTTAAAGCGTTAGCTACGCGCGCAGAAACCACGGGTGG-CCCCCACACCTAGTGCCCAACGTTTACAGCGTGG
**S16-000004 DEPTH + 2
TCGACTTAACGCGTTAGCTCCGAAGCCACGCCCCAAGG-GCACAACCTCCAAGTCGACATCGTTTACGGCGGGGA

1516-0000046
TACGTTATCGCGTTAGCTTCGCCAAGCACGGCATCCTGCGCTTAGCCAACGTACATCGTTTAGGGTGTGCACTAA
>#\$16-0000241
TACGTTTATCGCGTT-ASCTTCGCCAAGCACAGCATCCTGCGCTTAGCCAACGTACATCGT-TAGGGTGTGGGACTAA
>#\$16-0000375
TACGTTTATCGCATT-AGCTTCGCCAAGCACGGCAGCACCTCGCGCTTAGCCAACGTACATCGTTTAGG-TGTGGGACTAA
>#\$16-0000209
GGCACTTAAAGCGTTAGCTACGGCGCAGAAACCACGGGTGG-CCCCCACACCTAGTGCCCAACGTTACAGCGTGGG
>#\$16-0000657

TCGACTTAACGCCTTAGCTCCGGAAGCCACGCCTCAAGG-GCACAACCTCCAAGTCGACATCGS-TACGGCGTGGAT >\$\$16-0000673

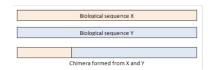
TEGACTTAACGCGTTAGCTCCGGAAGCCACGCCTCAAGGGGCACAACCTCCAAGTCGACATCGTTTACCGCCTGAAT

Filtering artefacts

PCR errors

- Most Taq polymerases introduce point mutations (error) at a rate of 1 every 1000 bases
- Solution: use Hi-Fi polymerases with lower error rates (\$\$\$)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●


Chimeras

- Chimeras are sequences formed by two or more biological sequences joined together
- Solution: reduce number of PCR cycles and increase annealing temperature

Filtering artefacts

PCR errors

- Most Taq polymerases introduce point mutations (error) at a rate of 1 every 1000 bases
- **Solution**: use Hi-Fi polymerases with lower error rates (\$\$\$)
- Chimeras
 - Chimeras are sequences formed by two or more biological sequences joined together
 - Solution: reduce number of PCR cycles and increase annealing temperature

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Filtering artefacts

>*16S-0000011 | depth=44 | freq=2.42

TTCASTGCCTCCCCTAGCTTTCGCCCTCAGCTGCCGTCCAGTGAACTATCTTCATCATCGGCATT CCTGCACATATCTACGATTTCACTCTCACTGGTGCAGTCCCGTCCACCACCTCTAGCCAAACAG >165-0000076 | depth=3 | freq=1.82

TTCAATGTTTGCTCCCCACGCTTTCGAGCCTCAGCGTCAGTTACAAGCCAGAGAGCCGCTTTCGCCACCGGT GTTCCTCCATATATCTACGCATTTCACCGCTACACATGGAATTCCACCTCTCCCCCTCTTGCACCCAGTTAAA

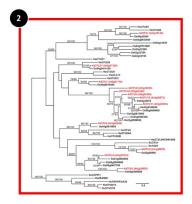
>*16S-0000052 | depth=32 | freq=1.76

TTCACGGATACCCGCACCTTCGACGTTAAGCGTCAGTGGCGCCCCCCGCTCGCGTCGCATCGCAGTGCT TCGTCATATCTAAGCATTTCACGGCTACACGACGAGATTCCGCCCACGTGGCGTACTCAAGGAAACCAGTA >165-0000141 | depth=15 | freq=0.83

TTCAACGTTCGCTCCCCTGGCTTTCGCGCCTCAGCGTCAGTTTTCGTCGAGAAAGTCGCCTTCGCCACTGGT GTCGTTCCTAGTATCTACGCGTTTCACCGCTACACTAGGAATTCCACTTTCCTCTCCGGATACT Chimera

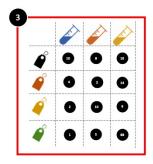
>#165-0000058 | depth=12 | freq=0.66

TTCAGTCGCTCCCCTAGCTTTCGCACTTCAGCCDAGTCCCCTAAGCCAGAGAGCCCGCTTTCGCCACCGGT GTTCC<u>TCCATATATCTACG</u>CATTTCACCGCTACACATGGAATTCCACTCTCCCCCCTTTGCACTCAAGTTAAA


>*16S-0000098 | depth=10 | freq=0.55

TTTAGTCCTGTTCGCTCCCCACGCTTTCGCTCCTCAGCGTCAGTAACGGCCCAGAGACCCGCCTTCGCCACC GGTGTTCTTCCTGATATCTGCGCATTCCACCGCTACACCAGGAGTTCCAGCCTCCC

>1759-0000295 | depth=2 | freq=0.11 TTCACGATACCCACOUNTECGACCATCACCGTCACTTGCGCTACAGTAAGCTGCCCTBECAATCGAGTTCT TCGTGATATCTAAGCATTCCACCGCTACACGAATTCCGCCCCACTTAGCCAATCGACGTTCT >16165-000021 | depth=1 | freqs0.06


TTCAACGTTCGCTCCCCTGCCTTCGCGCCTCAGCGTCAGTTTTCGTCCAGAAGTCGCCTTCGCCACTGGT

Phylogenetic tree!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

OTU table!

・ロト・日本・日本・日本・日本・日本

Align to reference

>*16S-0000002 | depth=42 | freq=2.31

TTCAACCTTGCGGTCGTACTCCCCAGGCGGAGTGCTTAATGCGTTAGCGCGGGCACTAAACCCCGGAAAGGGTCTAACACCTAGCACTCATCGT TACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCCAGGTTTCGAGCCCAGGGTCAGGTACAAGCCAGAGACCGCTTTGGCACG GTGTTCCTCCATATATCTACGGATTCACCGCTACCATGGAATTCCACTCTCCCCTCTTGCACTCAAGTTAAACAGTTTCCAAAGCGTACCATG GTTAACCCACACCTTTAACTCTGAGCTTATC

>*16S-0000019 | depth=12 | freg=0.66

>>165-0000019 | deptn=12 | frequ.60 Tracectreegeceratercockaegearthactarcecatregetregeacagacagterctccrgccacaccecagtaatcarcestrac Gecegegactaccagegtatctaatcetertegetceccecegettregecactreagetracegtccagtaatcarcetreatertcarcegea Trectecacatactarctaceattreatercetertegecattccgtccactcrccgegtactcagtcagttcagttcagttcaagtercagtegeage

VS.

Assign taxonomy

AY053482.1;tax=k:Bacteria,p:Firmicutes,c:Bacilli,o:Lactobacillales,f:Streptococcaceae, g:Streptococcus,s:pseudopneumoniae

Sequence ID: Icl|Query_210570 Length: 1429 Number of Matches: 1

Range 1: 565 to 882 Graphics

Score	Expect	Identities	Gaps	Strand
588 bits(318)	7e-172	318/318(100%)	0/318(0%)	Plus/Minus

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Taxonomy!

ASV148428	Bacteria(100);Proteobacteria(100);Gammaproteobacte.
ASV212114	Bacteria(100);Cyanobacteria(100);Cyanobacteria(100);.
ASV9620	Bacteria(100);Proteobacteria(100);Alphaproteobacteri.
ASV147186	Bacteria(100);Proteobacteria(100);Betaproteobacteria(
ASV89359	Bacteria(100); Proteobacteria(100); Alphaproteobacteri.
ASV1061	Bacteria(100);Proteobacteria(100);Gammaproteobacte.
ASV328581	Bacteria(100);Bacteroidetes(100);Bacteroidia(100);Bac.
ASV86104	Bacteria(100);Proteobacteria(100);Alphaproteobacteri.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Data analysis

(ロ)、(型)、(E)、(E)、 E) の(()

What we will use?

・ロト・日本・日本・日本・日本・日本

What do we need to start?

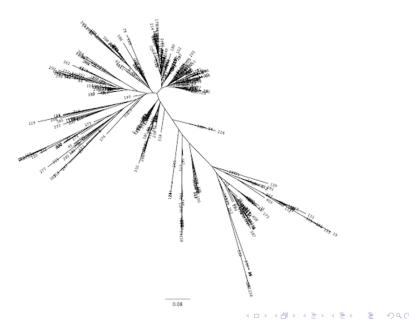
phyloseq-class	s experiment-level	object
otu_table()	OTU Table:	[43879 taxa and 289 samples]
<pre>sample_data()</pre>	Sample Data:	[289 samples by 9 sample variables]
tax_table()	Taxonomy Table:	[43879 taxa by 7 taxonomic ranks]
phy_tree()	Phylogenetic Tree:	[43879 tips and 43878 internal nodes]

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

otu_table()

	165.SOI.41	165.SOI.48	165.SOI.18	165.SOI.46	165.SOI.59	165.S0I.34	165.R00.57	165.R00.43	165.R00.58
denovo7709	1	1	0	0	0	0	0	0	0
denovo7708	0	0	1	1	1	0	0	0	0
denovo22216	0	0	0	0	0	1	0	0	0

sample_data()


	A	В	с	D	E	F	G	н
1	SampleID	Community	Category	Sample_type	Genotype	Soil	Aphid	H_defensa
2	16S.APH.1	Bacterial	Experimenta	Aphid	TBR	WHS	Present	Absent
3	16S.APH.2	Bacterial	Experimenta	Aphid	TBR	WHS	Present	Absent
4	16S.APH.3	Bacterial	Experimenta	Aphid	TBR	WHS	Present	Absent
5	16S.APH.4	Bacterial	Experimenta	Aphid	TBR	WHS	Present	Absent
6	16S.APH.5	Bacterial	Experimenta	Aphid	TBR	WHS	Present	Absent
7	16S.APH.6	Bacterial	Experimenta	Aphid	TBR	WHS	Present	Present
8	16S.APH.7	Bacterial	Experimenta	Aphid	TBR	WHS	Present	Present
9	16S.APH.8	Bacterial	Experimenta	Aphid	TBR	WHS	Present	Present
10	16S.APH.9	Bacterial	Experimenta	Aphid	TBR	WHS	Present	Present
11	16S.APH.10	Bacterial	Experimenta	Aphid	TBR	WHS	Present	Present
12	16S.APH.11	Bacterial	Experimenta	Aphid	TBR	MICROB	Present	Absent
13	16S.APH.12	Bacterial	Experimenta	Aphid	TBR	MICROB	Present	Absent
14	16S.APH.13	Bacterial	Experimenta	Aphid	TBR	MICROB	Present	Absent
15	16S.APH.14	Bacterial	Experimenta	Aphid	TBR	MICROB	Present	Absent
16	16S.APH.15	Bacterial	Experimenta	Aphid	TBR	MICROB	Present	Absent
17	16S.APH.16	Bacterial	Experimenta	Aphid	TBR	MICROB	Present	Present
18	16S.APH.17	Bacterial	Experimenta	Aphid	TBR	MICROB	Present	Present
19	165.APH.18	Bacterial	Experimenta	Aphid	TBR	MICROB	Present	Present

tax_table()

	Rank1	Rank2
denovo7709	"D_0Bacteria"	"D_1Proteobacteria"
denovo7708	"D_0Bacteria"	"D_1Proteobacteria"
denovo22216	"D_0Bacteria"	"D_1Bacteroidetes"
denovo11322	"D_0Bacteria"	"D_1Bacteroidetes"
denovo44859	"D_0Bacteria"	"D_1Chloroflexi"

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

phy_tree()

Terminology

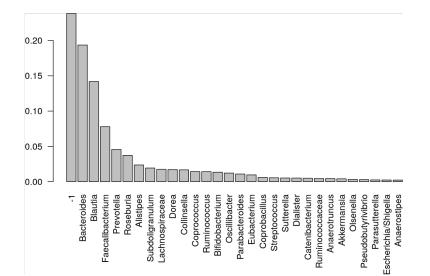
Quantitative versus qualitative metrics

 qualitative metrics only account for whether an organism is present or absent

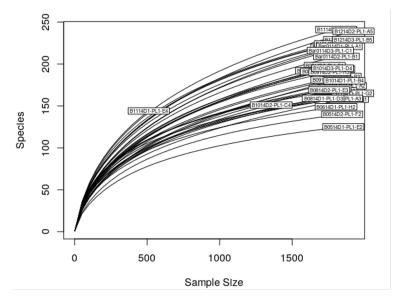
quantitative metrics account for abundance

- Phylogenetic versus non-phylogenetic metrics
 - non-phylogenetic metrics treat all OTUs as being equally related
 - phylogenetic metrics incorporate evolutionary relationships between the OTUs

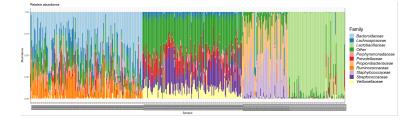
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

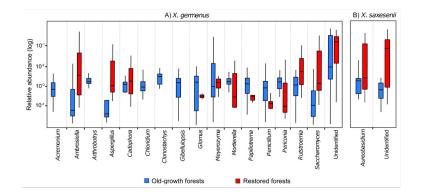

Terminology

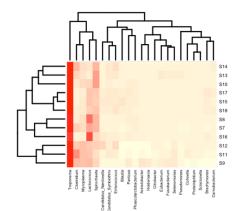
Quantitative versus qualitative metrics

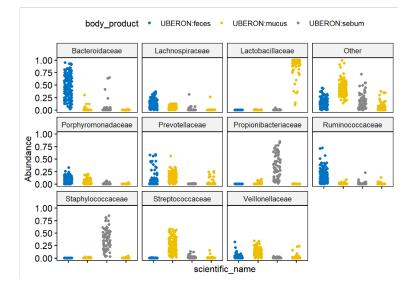

- qualitative metrics only account for whether an organism is present or absent
- quantitative metrics account for abundance
- Phylogenetic versus non-phylogenetic metrics
 - non-phylogenetic metrics treat all OTUs as being equally related
 - phylogenetic metrics incorporate evolutionary relationships between the OTUs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●


Exploratory plots


Exploratory plots


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ()~



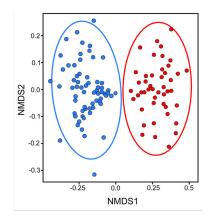
イロト イロト イヨト イヨト 三日

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Does community structure vary between treatments?

Multivariate statistics

- Dissimilarity matrices (Bray-Curtis, Jaccard, (w)unifrac)
- Ordination plots (PCA, PCoa, NMDS, ...)
- Statistical tests (PERMANOVA, ANOSIM, ...)


Г	0							-	1
	4.15	0							
	11.02	15.01	0						
	7.16	3.03	18.02	0					
	43.72	47.49	32.80	50.41	0				·
	54.37	58.23	43.36	61.19	11.12	0			
	46.34	50.20	35.34	53.16	3.78	8.03	0		
L	55.42	59.27	44.42	62.23	12.05	1.12	9.08	0	

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

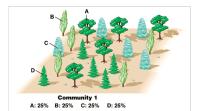
Does community structure vary between treatments?

Multivariate statistics

- Dissimilarity matrices (Bray-Curtis, Jaccard, (w)unifrac)
- Ordination plots (PCA, PCoa, NMDS, ...)
- Statistical tests (PERMANOVA, ANOSIM, ...)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Does community structure vary between treatments?


Multivariate statistics

- Dissimilarity matrices (Bray-Curtis, Jaccard, (w)unifrac)
- Ordination plots (PCA, PCoa, NMDS, ...)
- Statistical tests (PERMANOVA, ANOSIM, ...)

```
##
## Call:
## adonis(formula = erie brav ~ Station, data = sampledf)
##
## Permutation: free
## Number of permutations: 999
##
## Terms added sequentially (first to last)
##
            Df SumsOfSqs MeanSqs F.Model
##
                                              R2 Pr(>F)
## Station
             2
                  0.6754 0.33772 2.7916 0.09531 0.003 **
## Residuals 53 6.4118 0.12098
                                         0.90469
## Total
            55 7.0872
                                         1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
```

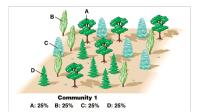
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

- Richness refers to how many different types of organisms are present in a sample
- Evenness tells us how even or uneven the distribution of species abundances are in a given environment
- Diversity is a measurement of species richness combined with evenness

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Community 2 A: 80% B: 5% C: 5% D: 10% Copyright © Pearson Education, Inc., publishing as Benjamin Cummings

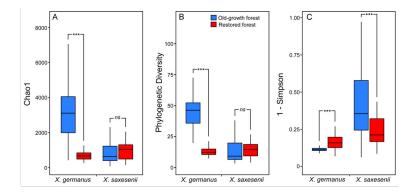
- Richness refers to how many different types of organisms are present in a sample
- Evenness tells us how even or uneven the distribution of species abundances are in a given environment
- Diversity is a measurement of species richness combined with evenness



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

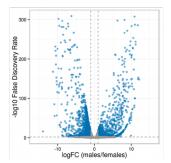
Community 2 A: 80% B: 5% C: 5% D: 10% Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings

- Richness refers to how many different types of organisms are present in a sample
- Evenness tells us how even or uneven the distribution of species abundances are in a given environment
- Diversity is a measurement of species richness combined with evenness



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Community 2 A: 80% B: 5% C: 5% D: 10% Copyright © Pearson Education, Inc., publishing as Benjamin Cummings


Lots of metrics!

- Observed OTUs: we simply count the OTUs that are observed in a given sample
- Shannon indexassumes all species are represented in a sample and that they are randomly sampled
- Simpson index is a dominance index because it gives more weight to common or dominant species.
- Chao1 index gives more weight to the low abundance species, only the singletons and doubletons are used to estimate the number of missing species
- PD is computed simply as the sum of the branch length in a phylogenetic tree that is "covered" or represented in a given sample.

(日) (四) (日) (日) (日)

Who differs between treatments?

baseMean	log2FoldChange	IfcSE	stat	pvalue	padj	taxon
29.20535	1.91205	0.13432	14.23457	0.00000	0.00000	Clostridium difficile et rel.
51.65152	3.04116	0.28687	10.60107	0.00000	0.00000	Mitsuokella multiacida et rel.
12.39749	1.83825	0.18531	9.91994	0.00000	0.00000	Klebisiella pneumoniae et rel.
44.16494	1.78333	0.23072	7.72937	0.00000	0.00000	Megasphaera elsdenii et rel.
66.93783	1.68345	0.25330	6.64609	0.00000	0.00000	Escherichia coli e rel.
3.63459	1.53142	0.23140	6.61792	0.00000	0.00000	Weissella et rel.
5.74035	3.07334	0.47848	6.42308	0.00000	0.00000	Serratia
0.42171	1.70079	0.47147	3.60743	0.00031	0.00075	Moraxellaceae

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

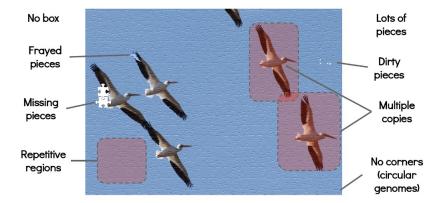
More tools

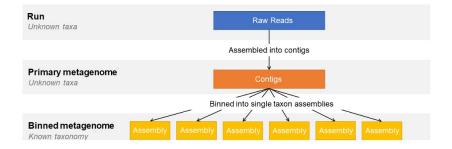
magiSEQ™

assembly

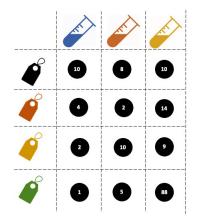
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Let's take a step back: genomics

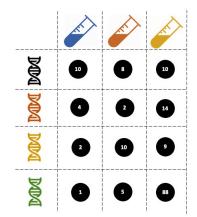



Align reads to *reference* genome and identify variants

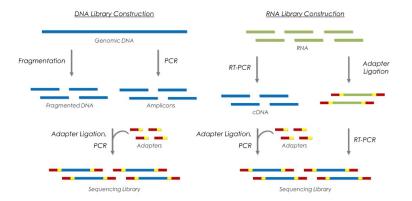
Construct genome sequence from overlaps between reads


◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

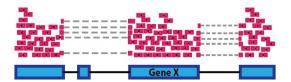
Let's take a step back: genomics

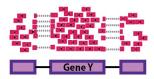


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

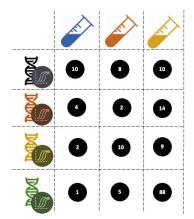


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで


◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @


Metatranscriptomics

・ロ・・ 「「・・」、 ・ 「」、 ・ 「」、 ・ ・ 」


Transcriptomics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Metatranscriptomics

Questions?